Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.624
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38599899

RESUMO

Selenium (Se) is an essential trace element, which is inserted as selenocysteine (Sec) into selenoproteins during biosynthesis, orchestrating their expression and activity. Se is associated with both beneficial and detrimental health effects; deficient supply or uncontrolled supplementation raises concerns. In particular, Se was associated with an increased incidence of type 2 diabetes (T2D) in a secondary analysis of a randomized controlled trial (RCT). In this review, we discuss the intricate relationship between Se and diabetes and the limitations of the available clinical and experimental studies. Recent evidence points to sexual dimorphism and an association of Se deficiency with gestational diabetes mellitus (GDM). We highlight the emerging evidence linking high Se status with improved prognosis in patients with T2D and lower risk of macrovascular complications.

2.
Oncol Rep ; 51(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639185

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive, heterogeneous tumour usually caused by alcohol and tobacco consumption, making it one of the most common malignancies worldwide. Despite the fact that various therapeutic approaches such as surgery, radiation therapy (RT), chemotherapy (CT) and targeted therapy have been widely used for HNSCC in recent years, its recurrence rate and mortality rate remain high. RT is the standard treatment choice for HNSCC, which induces reactive oxygen species production and causes oxidative stress, ultimately leading to tumour cell death. CT is a widely recognized form of cancer treatment that treats a variety of cancers by eliminating cancer cells and preventing them from reproducing. Immune checkpoint inhibitor and epidermal growth factor receptor are important in the treatment of recurrent or metastatic HNSCC. Iron death, a type of cell death regulated by peroxidative damage to phospholipids containing polyunsaturated fatty acids in cell membranes, has been found to be a relevant death response triggered by tumour RT in recent years. In the present review, an overview of the current knowledge on RT and combination therapy and iron death in HNSCC was provided, the mechanisms by which RT induces iron death in tumour cells were summarized, and therapeutic strategies to target iron death in HNSCC were explored. The current review provided important information for future studies of iron death in the treatment of HNSCC.


Assuntos
Ferroptose , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Terapia Combinada , Ferro
3.
Eur J Med Chem ; 270: 116387, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593589

RESUMO

Activating apoptosis has long been viewed as an anti-cancer process, but recently increasing evidence has accumulated that induction of ferroptosis has emerged as a promising strategy for cancer therapeutics. Glutathione peroxidase 4 (GPX4) is one of the pivotal factors regulating ferroptosis that targeted inhibition or degradation of GPX4 could effectively trigger ferroptosis. In this study, a series of ML162-quinone conjugates were constructed by using pharmacophore hybridization and bioisosterism strategies, with the aim of obtaining more active anticancer agents via the ferroptosis and apoptosis dual cell death processes. Of these compounds, GIC-20 was identified as the most active one that exhibited promising anticancer activity both in vitro and in vivo via ferroptosis and apoptosis dual-targeting processes, without obvious toxicity compared with ML162. On one hand, GIC-20 could trigger ferroptosis in cells by inducing intracellular lipid peroxide and ROS accumulation, and destroying mitochondrial structure. In addition to GPX4 inhibition, GIC-20 can also trigger ferroptosis via proteasomal-mediated degradation of GPX4, suggesting GIC-20 may function as a molecule glue degrader. On the other hand, GIC-20 can also induce apoptosis via upregulating the level of apoptotic protein Bax and downregulating the level of anti-apoptotic protein Bcl-2 in HT1080 cells. Furthermore, GIC-20 also enhanced the sensitivity of resistant MIA-PaCa-2-AMG510R cells to AMG510, suggesting the great potential of GIC-20 in overcoming the acquired resistance of KRASG12C inhibitors. Overall, GIC-20 represents a novel dual ferroptosis/apoptosis inducer warranting further development for cancer therapeutics and overcoming drug resistance.


Assuntos
Compostos de Anilina , Ferroptose , Naftoquinonas , Neoplasias , Tiofenos , Humanos , Naftoquinonas/farmacologia , Apoptose
4.
Free Radic Biol Med ; 218: 1-15, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574973

RESUMO

Sjogren's syndrome (SS) is an autoimmune disease characterized by dysfunction of exocrine glands, such as salivary glands. However, the molecular mechanism of salivary secretion dysfunction in SS is still unclear. Given the significance of glutathione peroxidase 4 (GPX4) in cellular redox homeostasis, we hypothesized that dysregulation of GPX4 may play a pivotal role in the pathogenesis of salivary secretion dysfunction observed in SS. The salivary gland of SS patients and the SS mouse model exhibited reduced expression of the ferroptosis inhibitor GPX4 and the important protein aquaporin 5 (AQP5), which is involved in salivary secretion. GPX4 overexpression upregulated and GPX4 knockdown downregulated AQP5 expression in salivary gland epithelial cells (SGECs) and salivary secretion. Bioinformatics analysis of GSE databases from SS patients' salivary glands revealed STAT4 as a key intermediary regulator between GPX4 and AQP5. A higher level of nuclear pSTAT4 was observed in the salivary gland of the SS mouse model. GPX4 overexpression inhibited and GPX4 knockdown promoted STAT4 phosphorylation and nuclear translocation in SGECs. CHIP assay confirmed the binding of pSTAT4 within the promoter of AQP5 inhibiting AQP5 transcription. GPX4 downregulation accumulates intracellular lipid ROS in SGECs. Lipid ROS inhibitor ferrostatin-1 treatment during in vitro and in vivo studies confirmed that lipid ROS activates STAT4 phosphorylation and nuclear translocation in SGECs. In summary, the downregulated GPX4 in SGECs contributes to salivary secretion dysfunction in SS via the lipid ROS/pSTAT4/AQP5 axis. This study unraveled novel targets to revitalize the salivary secretion function in SS patients.

5.
MedComm (2020) ; 5(4): e520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576455

RESUMO

Ferroptosis has been confirmed to be associated with various diseases, but the relationship between ferroptosis and atherosclerosis (AS) remains unclear. Our research detailly clarified the roles of ferroptosis in three continuous and main pathological stages of AS respectively (injury of endothelial cells [ECs], adhesion of monocytes, and formation of foam cells). We confirmed that oxidized low-density lipoprotein (ox-LDL), the key factor in the pathogenesis of AS, strongly induced ferroptosis in ECs. Inhibition of ferroptosis repressed the adhesion of monocytes to ECs by inhibiting inflammation of ECs. Ferroptosis also participated in the formation of foam cells and lipids by regulating the cholesterol efflux of macrophages. Further research confirmed that ox-LDL repressedthe activity of glutathione peroxidase 4 (GPX4), the classic lipid peroxide scavenger. Treatment of a high-fat diet significantly induced ferroptosis in murine aortas and aortic sinuses, which was accompanied by AS lesions and hyperlipidemia. Treatment with ferroptosis inhibitors significantly reduced ferroptosis, hyperlipidemia, and AS lesion development. In conclusion, our research determined that ox-LDL induced ferroptosis by repressing the activity of GPX4. Antiferroptosis treatment showed promising treatment effects in vivo. Ferroptosis-associated indexes also showed promising diagnostic potential in AS patients.

6.
J Exp Clin Cancer Res ; 43(1): 108, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600610

RESUMO

Ferroptosis is a newly identified iron-dependent form of death that is becoming increasingly recognized as a promising avenue for cancer therapy. N6-methyladenosine (m6A) is the most abundant reversible methylation modification in mRNA contributing to tumorigenesis. However, the crucial role of m6A modification in regulating ferroptosis during colorectal cancer (CRC) tumorigenesis remains elusive. Herein, we find that m6A modification is increased during ferroptotic cell death and correlates with the decreased m6A demethylase fat mass and obesity-associated protein (FTO) expression. Functionally, we demonstrate that suppressing FTO significantly induces CRC ferroptotic cell death, as well as enhancing CRC cell sensitivity to ferroptosis inducer (Erastin and RSL3) treatment. Mechanistically, high FTO expression increased solute carrier family 7 member 11 (SLC7A11) or glutathione peroxidase 4 (GPX4) expressions in an m6A-YTHDF2 dependent manner, thereby counteracting ferroptotic cell death stress. In addition, we identify Mupirocin as a novel inhibitor of FTO, and Mupirocin induces CRC ferroptosis and inhibits tumor growth. Clinically, the levels of FTO, SLC7A11, and GPX4, are highly correlated expression in CRC tissues. Our findings reveal that FTO protects CRC from ferroptotic cell death in promoting CRC tumorigenesis through triggering SLC7A11/GPX4 expression.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Neoplasias Colorretais , Mupirocina , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Sistema y+ de Transporte de Aminoácidos , Carcinogênese , Morte Celular , Transformação Celular Neoplásica , Neoplasias Colorretais/tratamento farmacológico
7.
Mil Med Res ; 11(1): 22, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622688

RESUMO

BACKGROUND: Liver ischemia/reperfusion (I/R) injury is usually caused by hepatic inflow occlusion during liver surgery, and is frequently observed during war wounds and trauma. Hepatocyte ferroptosis plays a critical role in liver I/R injury, however, it remains unclear whether this process is controlled or regulated by members of the DEAD/DExH-box helicase (DDX/DHX) family. METHODS: The expression of DDX/DHX family members during liver I/R injury was screened using transcriptome analysis. Hepatocyte-specific Dhx58 knockout mice were constructed, and a partial liver I/R operation was performed. Single-cell RNA sequencing (scRNA-seq) in the liver post I/R suggested enhanced ferroptosis by Dhx58hep-/-. The mRNAs and proteins associated with DExH-box helicase 58 (DHX58) were screened using RNA immunoprecipitation-sequencing (RIP-seq) and IP-mass spectrometry (IP-MS). RESULTS: Excessive production of reactive oxygen species (ROS) decreased the expression of the IFN-stimulated gene Dhx58 in hepatocytes and promoted hepatic ferroptosis, while treatment using IFN-α increased DHX58 expression and prevented ferroptosis during liver I/R injury. Mechanistically, DHX58 with RNA-binding activity constitutively associates with the mRNA of glutathione peroxidase 4 (GPX4), a central ferroptosis suppressor, and recruits the m6A reader YT521-B homology domain containing 2 (YTHDC2) to promote the translation of Gpx4 mRNA in an m6A-dependent manner, thus enhancing GPX4 protein levels and preventing hepatic ferroptosis. CONCLUSIONS: This study provides mechanistic evidence that IFN-α stimulates DHX58 to promote the translation of m6A-modified Gpx4 mRNA, suggesting the potential clinical application of IFN-α in the prevention of hepatic ferroptosis during liver I/R injury.


Assuntos
Ferroptose , Traumatismo por Reperfusão , Animais , Camundongos , Diclorodifenil Dicloroetileno , Hepatócitos , Interferon-alfa , RNA , RNA Mensageiro
8.
Food Chem Toxicol ; : 114682, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657941

RESUMO

Butylated hydroxyanisole (BHA) is one of the most commonly used antioxidants and is widely used in food, but whether it causes vascular damage has not been clearly studied. The present study demonstrated for the first time that BHA reduced the viability of human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (BEND3) in a dose- and time-dependent manner. Moreover, BHA inhibited the migration and proliferation of vascular endothelial cells (ECs). Further analysis revealed that in ECs, the ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed the BHA-induced increase in Fe2+ and malonaldehyde (MDA) levels. Acridine orange staining demonstrated that BHA increased lysosomal permeability. At the protein level, BHA increased the expression of transcription factor EB (TFEB) and decreased the expression of glutathione peroxidase (GPX4), solute carrier family 7 member 11 (SLC7A11, xCT), and ferritin heavy chain 1 (FTH1). Moreover, these effects of BHA could be reversed by knocking down TFEB. In vivo experiments confirmed that BHA caused elevated pulse wave velocity (PWV) and reduced acetylcholine-dependent vascular endothelial diastole. In conclusion, BHA degrades GPX4, xCT, and FTH1 through activation of the TFEB-mediated lysosomal pathway and promotes ferroptosis, ultimately leading to vascular endothelial cell injury.

9.
Comp Biochem Physiol B Biochem Mol Biol ; 273: 110980, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636724

RESUMO

Boring sponge infection affects growth, development and reduces the soft tissue weight of oysters. In this study, we investigated the effects of boring sponge on the activity of three antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GP)) in the mantle, and the production of reactive oxygen species (ROS) and potential genotoxicity in hemocytes of the Pacific oyster Magallana gigas. Our results showed a significant increase in ROS production and DNA damage in hemocytes. Notably, the activity of SOD, CAT, and GP in the mantle was not significantly affected by boring sponge infection. Collectively, these results suggest that sponge invasion may cause oxidative stress in Pacific oyster hemocytes through ROS overproduction.

10.
World J Gastroenterol ; 30(11): 1588-1608, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38617450

RESUMO

BACKGROUND: Acute liver failure (ALF) has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis. The silent information regulator sirtuin 1 (SIRT1)-mediated deacetylation affects multiple biological processes, including cellular senescence, apoptosis, sugar and lipid metabolism, oxidative stress, and inflammation. AIM: To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms. METHODS: This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) testing. C57BL/6 mice were also intraperitoneally pretreated with SIRT1, p53, or glutathione peroxidase 4 (GPX4) inducers and inhibitors and injected with lipopolysaccharide (LPS)/D-galactosamine (D-GalN) to induce ALF. Gasdermin D (GSDMD)-/- mice were used as an experimental group. Histological changes in liver tissue were monitored by hematoxylin and eosin staining. ALT, AST, glutathione, reactive oxygen species, and iron levels were measured using commercial kits. Ferroptosis- and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction. SIRT1, p53, and GSDMD were assessed by immunofluorescence analysis. RESULTS: Serum AST and ALT levels were elevated in patients with ALF. SIRT1, solute carrier family 7a member 11 (SLC7A11), and GPX4 protein expression was decreased and acetylated p5, p53, GSDMD, and acyl-CoA synthetase long-chain family member 4 (ACSL4) protein levels were elevated in human ALF liver tissue. In the p53 and ferroptosis inhibitor-treated and GSDMD-/- groups, serum interleukin (IL)-1ß, tumour necrosis factor alpha, IL-6, IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated. In mice with GSDMD knockout, p53 was reduced, GPX4 was increased, and ferroptotic events (depletion of SLC7A11, elevation of ACSL4, and iron accumulation) were detected. In vitro, knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels, the cytostatic rate, and GSDMD expression, restoring SLC7A11 depletion. Moreover, SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group, accompanied by reduced p53, GSDMD, and ACSL4, and increased SLC7A11 and GPX4. Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalN-induced in vitro and in vivo models. CONCLUSION: SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.


Assuntos
Falência Hepática Aguda , Sirtuína 1 , Animais , Humanos , Camundongos , Gasderminas , Ferro , Lipopolissacarídeos , Falência Hepática Aguda/induzido quimicamente , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Sirtuína 1/genética , Proteína Supressora de Tumor p53
11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 493-498, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660857

RESUMO

OBJECTIVE: To investigate the relationship between clinical indicators of CRAB symptoms and antioxidant enzyme activity in patients with multiple myeloma (MM). METHODS: The activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in the bone marrow supernatants of 44 patients with MM and 12 patients with non-malignant hematological diseases was detected by colorimetric assay, and then the differences in the activity of antioxidant enzymes between the two groups were compared. Furthermore, the relationship between the activity of antioxidant enzymes in the MM group and the levels of serum calcium, serum creatinine (Scr), hemoglobin (Hb), alkaline phosphatase (ALP) as well as bone lesions were analyzed. RESULTS: The antioxidant enzyme activity was lower in MM patients compared with the control group (P < 0.05). When the concentrations of serum calcium and ALP were higher than the normal levels, Hb was lower than 85 g/L, and there were multiple bone lesions, the activity of CAT, SOD and GPX was significantly declined (P < 0.05); When the concentration of Scr≥177 µmol/L, the activity of GPX was significantly declined (P < 0.05). Regression analyses showed that CAT, SOD and GPX were negatively correlated with serum calcium (r =-0.538, r =-0.456, r =-0.431), Scr (r =-0.342, r =-0.384, r =-0.463), and ALP (r =-0.551, r =-0.572, r =-0.482). CONCLUSION: The activity of antioxidant enzymes, including CAT, SOD and GPX, were decreased in patients with MM and they were negatively correlated with some clinical indicators of CRAB symptoms (such as serum calcium, Scr, and ALP), which suggests that promoting the activity of antioxidant enzymes may be beneficial to treat the CRAB symptoms of the patients with MM.


Assuntos
Fosfatase Alcalina , Antioxidantes , Cálcio , Catalase , Glutationa Peroxidase , Mieloma Múltiplo , Superóxido Dismutase , Humanos , Glutationa Peroxidase/sangue , Glutationa Peroxidase/metabolismo , Superóxido Dismutase/sangue , Superóxido Dismutase/metabolismo , Fosfatase Alcalina/sangue , Fosfatase Alcalina/metabolismo , Catalase/sangue , Catalase/metabolismo , Antioxidantes/metabolismo , Cálcio/sangue , Cálcio/metabolismo , Creatinina/sangue , Braquiúros , Medula Óssea
12.
Redox Biol ; 72: 103141, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38599017

RESUMO

The thiol redox state is a decisive functional characteristic of proteins in cell biology. Plasmatic cell compartments maintain a thiol-based redox regulatory network linked to the glutathione/glutathione disulfide couple (GSH/GSSG) and the NAD(P)H system. The basic network constituents are known and in vivo cell imaging with gene-encoded probes have revealed insight into the dynamics of the [GSH]2/[GSSG] redox potential, cellular H2O2 and NAD(P)H+H+ amounts in dependence on metabolic and environmental cues. Less understood is the contribution and interaction of the network components, also because of compensatory reactions in genetic approaches. Reconstituting the cytosolic network of Arabidopsis thaliana in vitro from fifteen recombinant proteins at in vivo concentrations, namely glutathione peroxidase-like (GPXL), peroxiredoxins (PRX), glutaredoxins (GRX), thioredoxins, NADPH-dependent thioredoxin reductase A and glutathione reductase and applying Grx1-roGFP2 or roGFP2-Orp1 as dynamic sensors, allowed for monitoring the response to a single H2O2 pulse. The major change in thiol oxidation as quantified by mass spectrometry-based proteomics occurred in relevant peptides of GPXL, and to a lesser extent of PRX, while other Cys-containing peptides only showed small changes in their redox state and protection. Titration of ascorbate peroxidase (APX) into the system together with dehydroascorbate reductase lowered the oxidation of the fluorescent sensors in the network but was unable to suppress it. The results demonstrate the power of the network to detoxify H2O2, the partially independent branches of electron flow with significance for specific cell signaling and the importance of APX to modulate the signaling without suppressing it and shifting the burden to glutathione oxidation.

13.
J Cell Mol Med ; 28(7): e18240, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509741

RESUMO

Growing evidence supports the analgesic efficacy of electroacupuncture (EA) in managing chronic neuropathic pain (NP) in both patients and NP models induced by peripheral nerve injury. However, the underlying mechanisms remain incompletely understood. Ferroptosis, a novel form of programmed cell death, has been found to be activated during NP development, while EA has shown potential in promoting neurological recovery following acute cerebral injury by targeting ferroptosis. In this study, to investigate the detailed mechanism underlying EA intervention on NP, male Sprague-Dawley rats with chronic constriction injury (CCI)-induced NP model received EA treatment at acupoints ST36 and GV20 for 14 days. Results demonstrated that EA effectively attenuated CCI-induced pain hypersensitivity and mitigated neuron damage and loss in the spinal cord of NP rats. Moreover, EA reversed the oxidative stress-mediated spinal ferroptosis phenotype by upregulating reduced expression of xCT, glutathione peroxidase 4 (GPX4), ferritin heavy chain (FTH1) and superoxide dismutase (SOD) levels, and downregulating increased expression of acyl-CoA synthetase long-chain family member 4 (ACSL4), malondialdehyde levels and iron overload. Furthermore, EA increased the immunofluorescence co-staining of GPX4 in neurons cells of the spinal cord of CCI rats. Mechanistic analysis unveiled that the inhibition of antioxidant pathway of Nrf2 signalling via its specific inhibitor, ML385, significantly countered EA's protective effect against neuronal ferroptosis in NP rats while marginally diminishing its analgesic effect. These findings suggest that EA treatment at acupoints ST36 and GV20 may protect against NP by inhibiting neuronal ferroptosis in the spinal cord, partially through the activation of Nrf2 signalling.


Assuntos
Eletroacupuntura , Ferroptose , Neuralgia , Humanos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Eletroacupuntura/métodos , Fator 2 Relacionado a NF-E2/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Medula Espinal/metabolismo , Analgésicos
14.
Int Immunopharmacol ; 132: 111900, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531200

RESUMO

The precise mechanism of ferroptosis as a regulatory cell death in intestinal ischemia injury induced by vascular intestinal obstruction (Vio) remains to be elucidated. Here, we evaluated iron levels, glutathione peroxidase 4 (GPX4) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) changes after intestinal ischemia injury to validate ferroptosis. As an enzyme for Fe3+ reduction to Fe2+, Ferric Chelate Reductase 1 (FRRS1) is involved in the electron transport chain and the tricarboxylic acid (TCA) cycle in mitochondria. However, whether it is involved in ferroptosis and its role in intestinal ischemia injury need to be clarified. In the present study, FRRS1 was overexpressed in vivo and in vitro. The results showed that overexpression of FRRS1 prevented ischemia-induced iron levels, reactive oxygen species (ROS) production, lipid peroxidation, inflammatory responses, and cell death. Meanwhile, FRRS1 overexpression promoted GPX4 expression and suppressed ACSL4 levels. Further studies revealed that FRRS1 overexpression inhibited the activity of large tumor suppressor 1 (LATS1) / Yes-associated protein (YAP) / transcriptional co-activator with PDZ-binding motif (TAZ), a key component of Hippo signaling. In conclusion, this study demonstrates that FRRS1 is intimately involved in the inhibition of ferroptosis and thus protection of the intestine from intestinal ischemia injury, its downstream mechanism was related to Hippo signaling. These data provide new sight for the prevention and treatment of intestinal ischemia injury.

15.
Ann Surg Oncol ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461192

RESUMO

BACKGROUND: Glutathione peroxidase 2 (GPX2) is an antioxidant enzyme with an important role in tumor progression in various cancers. However, the clinical significance of GPX2 in lung adenocarcinoma has not been clarified. METHODS: Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to analyze GPX2 mRNA expression. Then, we conducted immunohistochemistry (IHC) to assess GPX2 expression in specimens acquired from 351 patients with lung adenocarcinoma who underwent surgery at Kyushu University from 2003 to 2012. We investigated the association between GPX2 expression and clinicopathological characteristics and further analyzed the prognostic relevance. RESULTS: qRT-PCR revealed that GPX2 mRNA expression was notably higher in tumor cells than in normal tissues. IHC revealed that high GPX2 expression (n = 175, 49.9%) was significantly correlated with male sex, smoking, advanced pathological stage, and the presence of pleural, lymphatic, and vascular invasion. Patients with high GPX2 expression exhibited significantly shorter recurrence-free survival (RFS) and overall survival. Multivariate analysis identified high GPX2 expression as an independent prognostic factor of RFS. CONCLUSIONS: GPX2 expression was significantly associated with pathological malignancy. It is conceivable that high GPX2 expression reflects tumor malignancy. Therefore, high GPX2 expression is a significant prognostic factor of poor prognosis for completely resected lung adenocarcinoma.

16.
Genes (Basel) ; 15(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540446

RESUMO

BACKGROUND: Multiple myeloma (MM) is a malignancy derived from plasma cells. Bortezomib affects the concentration of reduced glutathione (GSH) and the activity of glutathione enzymes. The aim of our study was to analyze deletion (null/present) variants of GSTT1 and GSTM1 genes and their association with the levels of glutathione and its enzymes in bortezomib-treated cell cultures derived from MM patients. MATERIALS AND METHODS: This study included 180 individuals (80 MM patients and 100 healthy blood donors) who were genotyped via multiplex PCR (for the GSTT1/GSTM1 genes). Under in vitro conditions, MM bone marrow cells were treated with bortezomib (1-4 nM) to determine apoptosis (via fluorescence microscopy), GSH concentration, and activity of glutathione enzymes (via ELISA). RESULTS: Bortezomib increased the number of apoptotic cells and decreased the activity of S-glutathione transferase (GST) and glutathione peroxidase (GPx). We found significant differences in GST activity between 1 nM (GSTT1-null vs. GSTT1-present), 2 nM (GSTT1-null vs. GSTT1-present), and 4 nM (GSTM1-null vs. GSTM1-present) bortezomib: 0.07 vs. 0.12, p = 0.02; 0.06 vs. 0.10, p = 0.02; and 0.03 vs. 0.08, p = 0.01, respectively. CONCLUSIONS: Bortezomib affects the activities of GST and GPx. GST activity was associated with GSTT1 and GSTM1 variants but only at some bortezomib doses.


Assuntos
Mieloma Múltiplo , Polimorfismo Genético , Humanos , Bortezomib/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Glutationa Peroxidase/genética , Glutationa Transferase/genética , Glutationa , Apoptose
17.
Medicina (Kaunas) ; 60(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38541239

RESUMO

Background and Objectives: Metabolic disorders cause many skin issues, including acne vulgaris. This research investigated the function of glutathione peroxidase (GTPx) and biogenic amines as a potential novel pathophysiological link between metabolic syndrome (MetS) and acne vulgaris. Materials and Methods: The patients were distributed into two groups: metabolic precondition (MPG, n = 78) and control (CG, n = 81). To determine the extent of acne and metabolic preconditioning, patients were subjected to extensive clinical/paraclinical investigations. Additionally, catecholamine levels in urine and GTPx levels in blood were measured. Results: Mild acne was more common in the CG (32.1 vs. 6.4, p < 0.001), and severe acne was more common in the MPG (61.54 vs. 25.9, p < 0.001), with the average age being substantially higher in the MPG (23.81 vs. 21.05, p = 0.002). Significant variations were observed in the paraclinical levels for catecholamines (p < 0.05). In the MPG, most severe acne patients were overweight (52.1%), insulin-resistant (48.8%), or obese (47.9%). Moderate acne was most often linked to obesity (56%), overweight (44%), and insulin resistance (20%). Patients with severe acne (48.83%) had a considerably greater incidence of insulin resistance syndrome (p = 0.039) than those with moderate or severe acne (20%). The presence of two or three metabolic disorders considerably raised the risk of severe acne. Significant differences between groups were observed only in the subgroup of patients with severe acne, with lower values in the MPG (p = 0.015). Significant differences between groups were observed regarding the subgroup of patients with severe acne, with lower DTPx values in the MPG. At the group level, only CG patients with severe acne had reduced GTPx levels. Significant differences in catecholamine values were seen between groups (p < 0.05), independent of acne severity, except for adrenaline in mild acne patients (p = 0.059). Conclusions: The complex connection between GTPx and catecholamines in MetS suggests a significant role of these factors in the pathogenesis of acne associated with this condition, opening new perspectives in the research and treatment of acne in the context of MetS.


Assuntos
Acne Vulgar , Resistência à Insulina , Síndrome Metabólica , Humanos , Síndrome Metabólica/complicações , Sobrepeso/complicações , Acne Vulgar/etiologia , Aminas Biogênicas/uso terapêutico , Obesidade/complicações , Catecolaminas/uso terapêutico
18.
Redox Biol ; 71: 103119, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507972

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the build-up of extracellular amyloid ß (Aß) plaques and intracellular neurofibrillary tangles (NFTs). Ferroptosis, an iron (Fe)-dependent form of cell death plays a significant role in the multifaceted AD pathogenesis through generation of reactive oxygen species (ROS), mitochondrial damage, lipid peroxidation, and reduction in glutathione peroxidase 4 (GPX4) enzyme activity and levels. Aberrant liquid-liquid phase separation (LLPS) of tau drives the growth and maturation of NFTs contributing to AD pathogenesis. In this study, we strategically combined the structural and functional properties of gallic acid (GA) and cyclic dipeptides (CDPs) to synthesize hybrid molecules that effectively target both ferroptosis and amyloid toxicity in AD. This innovative approach marks a paradigm shift from conventional therapeutic strategies. This is the first report of a synthetic small molecule (GCTR) that effectively combats ferroptosis, simultaneously restoring enzymatic activity and enhancing cellular levels of its master regulator, GPX4. Further, GCTR disrupts Fe3+-induced LLPS of tau, and aids in attenuation of abnormal tau fibrillization. The synergistic action of GCTR in combating both ferroptosis and amyloid toxicity, bolstered by GPX4 enhancement and modulation of Fe3+-induced tau LLPS, holds promise for the development of small molecule-based novel therapeutics for AD.


Assuntos
Doença de Alzheimer , Ferroptose , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloide
19.
Sci Total Environ ; 924: 171680, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479529

RESUMO

The 2,4-Dichlorophenoxyacetic acid (2,4-D) is a low-cost herbicide to eradicate broadleaf weeds. Since the development of 2,4-D resistant transgenic crops, it has been described as one of the most widely distributed pollutants in the world, increasing concern about its environmental impacts. This study aimed to elucidate the antioxidant system response in animals exposed to 2,4-D by different routes of exposure. It focused on determining if tissue, phylogenetic group, and herbicide formulation would influence the antioxidant mechanisms. A careful literature search of Scopus, WoS, and Science Direct retrieved 6983, 24,098, and 20,616 articles, respectively. The dataset comprised 390 control-treatment comparisons and included three routes of exposure: transgenerational, oral, and topical. The data set for transgenerational and oral exposure revealed oxidative stress through a decrease in enzymatic activities and the level of molecules of the antioxidant system. In contrast, topical exposure increased the oxidative stress. Tissue-specific analyses revealed that the transgenerational effects reduced hepatic catalase (CAT) activity. Oral exposure caused a variety of effects, including increased CAT activity in the prostate and decreased activity in various tissues. Mammals predominate in the transgenerational and oral groups, showing a significantly reduced activity of the antioxidant system. In contrast, in the topical exposure, an increased activity of oxidative stress biomarkers was observed in fish, earthworms, and mollusks. The effects of the 2,4-D formulation on oxidative stress responses showed significant differences between pure and commercial formulations, with oral exposure resulting in decreased activity and topical exposure increasing responses. In summary, orally exposed animals exhibited a clear decrease in enzyme activities, transgenerational exposure elicited tissue-specific prompted biochemical reductions, and topical exposure induced increased responses, emphasizing the need for unbiased exploration of the effects of 2,4-D on biomarkers of oxidative stress while addressing publication bias in oral and topical datasets.


Assuntos
Antioxidantes , Herbicidas , Animais , Masculino , Antioxidantes/metabolismo , Herbicidas/farmacologia , Filogenia , Estresse Oxidativo , Biomarcadores/metabolismo , Ácido 2,4-Diclorofenoxiacético/toxicidade , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Transferase/metabolismo , Mamíferos/metabolismo
20.
Acta Parasitol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489009

RESUMO

PURPOSE: Resistance and adverse consequences of albendazole (ABZ) in treating trichinellosis urged demand for secure and effective new drugs. The current study aimed to assess the effect of chitosan-coated lipid nano-combination with albendazole and miltefosine (MFS) in treating experimental murine trichinellosis and evaluating pathological and immunological changes of trichinellosis. MATERIALS AND METHODS: One hundred twenty Swiss albino mice were divided into six groups. Each group was subdivided into a and b subgroups based on the scarification time, which was 7- and 40-days post-infection (PI), respectively. The treatment efficacy was evaluated using parasitological, histopathological, serological (interleukin (IL)-12 and IL-4 serum levels), immunohistochemical (GATA3, glutathione peroxidase1 (GPX1) and caspase-3), and scanning electron microscopy (SEM) methods. RESULTS: The most effective drug was nanostructured lipid carriers (NLCs) loaded with ABZ (G5), which showed the most significant reduction in adults and larval count (100% and 92.39%, respectively). The greatest amelioration in histopathological changes was reported in G4 treated with MFS. GATA3 and caspase-3 were significantly reduced in all treated groups. GPX1 was significantly increased in G6 treated with MFS + NLCs. The highest degenerative effects on adults and larvae by SEM were documented in G6. CONCLUSION: Loading ABZ or MFS on chitosan-coated NLCs enhanced their efficacy against trichinellosis. Although ABZ was better than MFS, their combination should be considered as MFS caused a significant reduction in the intensity of infection. Furthermore, MFS showed anti-inflammatory (↓GATA3) and antiapoptotic effects (↓caspase-3), especially in the muscular phase. Also, when loaded with NLCS, it showed an antioxidant effect (↑GPX1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA